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ABSTRACT
The vertical accuracy of elevation data in coastal environments is 
critical because small variations in elevation can affect an area’s 
exposure to waves, tides, and storm-related flooding. Elevation data 
contractors typically quantify the vertical accuracy of lidar-derived 
digital elevation models (DEMs) on a per-project basis to gauge 
whether the datasets meet quality and accuracy standards. Here, 
we collated over 5200 contractor elevation checkpoints along the 
Atlantic and Gulf of Mexico coasts of the United States that were 
collected for project-level analyses produced for assessing DEMs 
acquired for the U.S. Geological Survey’s Three-Dimensional 
Elevation Program. We used land cover data to quantify non- 
vegetated vertical accuracy and vegetated vertical accuracy statis
tics (overall and by point spacing bins) and assessed elevation error 
by land cover class. We found the non-vegetated vertical accuracy 
had an overall root mean square error of 6.9 cm and vegetated 
areas had a 95th percentile vertical error of 22.3 cm. Point spacing 
was generally positively correlated to elevation accuracy, but sam
ple size limited the ability to interpret results from accuracy by land 
cover, particularly in wetlands. Based on the specific questions 
a researcher may be asking, use of literature or fieldwork could 
assist with enhancing error statistics in underrepresented classes.
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1. Introduction

Elevation data are used across many science fields for understanding an area’s 
ecological, geomorphological, and hydrological attributes. In coastal environments, 
elevation is used for modelling exposure to physical stressors such as coastal 
inundation from waves, storm surge, and sea-level rise (Gesch 2018), mapping 
habitat coverage (Enwright et al. 2023), and assessing morphological change 
(Wernette, Lehner, and Houser 2020). The accuracy of elevation data is critical in 
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coastal environments where small elevation changes may lead to increased hydro
logical impacts from salt spray and exposure to oceanic water from tides, waves, 
and extreme storms. Vertical errors in digital elevation models (DEMs) produced 
from conventional manned aerial lidar data acquisitions can affect the accuracy of 
elevation-based inundation modelling, including forecasting of wetland persistence 
under sea-level rise (Medeiros et al. 2015) and coastal inundation modelling efforts 
that rely on elevation data (Barnard et al. 2014). Consequently, elevation accuracy 
information can be helpful for researchers working with remotely sensed elevation 
data, especially in dynamic and low-lying coastal settings.

Multiple factors can affect the capture and accuracy of lidar-derived DEMs, 
including vegetation type and characteristics, slope, and hydrology (Paul, 
Buytaert, and Sah 2020; Su and Bork 2006). The spacing between lidar pulses can 
also influence the accuracy of the resulting DEM, as higher point density may allow 
for lidar to penetrate deeper between vegetation to the ground (Salach et al.  
2018). Lidar contractors use in situ elevation data collection via surveying (here
after called ‘checkpoints’) to assess the accuracy of lidar acquisitions and products, 
such as DEMs. A newly revised edition of the American Society for 
Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for 
Digital Geospatial Data calls for at least 30 points collected via ground-truth Global 
Navigation Satellite System (GNSS) observations in non-vegetated and vegetated 
areas for ensuring that the lidar and its resulting DEM meet quality standards 
(ASPRS 2023).

Several studies have assessed accuracy beyond acquisition-level extents. Gesch, 
Oimoen, and Evans (2014) used an inventory of around 25,000 National Geodetic 
Survey geodetic control points and a database of Online Positioning User Service 
(OPUS) points to assess the accuracy of the U.S. Geological Survey’s (USGS) 1/3rd 
arc-second National Elevation Dataset across a variety of land cover classes. Stoker 
and Miller (2022) built upon this work by using similar sources, but also aggre
gated vertical accuracy checkpoints provided by contractors for each individual 
lidar acquisition to assess the accuracy and feasibility of a seamless version of 
USGS Three-Dimensional Elevation Program (3DEP) DEMs across the conterminous 
United States.

Due to the importance of elevation in coastal environments and the abundance 
of coastal wetlands, which commonly have high elevation error (Enwright et al.  
2023), updated information on accuracy using contractor checkpoints in coastal 
environments could provide a better understanding of elevation accuracy in 
coastal areas. Here, our research objectives were to use vertical accuracy check
points provided by contractors for each lidar acquisition to assess: 1) common 
summary statistics for lidar elevation accuracy (i.e., non-vegetated vertical accuracy 
[NVA] and vegetated vertical accuracy [VVA]); 2) elevation accuracy by lidar point 
spacing levels; and 3) elevation accuracy by land cover type. One challenge is that 
lidar checkpoints that have been historically collected for 3DEP were not standar
dized regarding file formats and summary statistics. This study also presents 
a process and recommendations for future work related to collating and extracting 
elevation accuracy data from contractor-provided elevation checkpoints.
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2. Materials and methods

2.1. Study area and data

The study area encompasses the Atlantic and Gulf of Mexico coasts of the United States. 
We focused our study on the coastal areas by using U.S. counties that intersect the 
Category 5 Maximum of the Maximum Storm Surge Inundation Extent (NOAA 2022) to 
determine the inland extent of the coastal region. This study area (Figure 1) is comprised 
of 297 counties within portions of 20 states and has a total of 575,819 km2.

The elevation data used in this project were from the USGS 3DEP, which collates 
and publishes national elevation data (USGS 2023). The 3DEP makes elevation data 
publicly available through USGS web maps, Amazon web services, including direct 
links on the ‘RockyWeb’ USGS server (accessible at https://rockyweb.usgs.gov/vde 
livery/Datasets/Staged/Elevation). Spatial metadata for the USGS 3DEP is contained 

Figure 1. State-level distribution of checkpoints and land cover types used to assess the vertical 
accuracy of digital elevation models along the Atlantic and Gulf of Mexico coasts of the United States. 
(a) Standard deviation (SD) of checkpoint density (points per km2). SD of the proportion of each land 
cover class for (b) Upland grass/pasture, (c) Upland forest, (d) Upland shrub, (e) Palustrine emergent 
wetland, (f) Palustrine woody wetland, (g) Estuarine emergent wetland, (h) Barren, and (i) Developed 
classes. C-CAP land cover distribution can be visualized by U.S. state using the C-CAP Land Cover Atlas 
(https://coast.noaa.gov/ccapatlas/). For U.S. State abbreviation definitions see https://www.faa.gov/ 
air_traffic/publications/atpubs/cnt_html/appendix_a.html.
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within the ‘Work Unit Extent Spatial Metadata (WESM)’ geopackage (accessible at 
https://www.usgs.gov/3d-elevation-program/3dep-spatial-metadata). This metadata 
layer includes lidar acquisition dates, lidar Quality Levels (QL), and other metadata 
for acquisitions in 3DEP. Lidar data acquired for 3DEP is designed to meet the 
Lidar Base Specification (LBS), which includes specifications for lidar collection and 
standards for the results (NGP 2022). QL, defined in the LBS, is used to define 
classifications based on aggregate nominal pulse spacing, swath data, absolute 
vertical accuracy, and minimum DEM cell size. In terms of point spacing, QL 0, 1, 
2, and 3 are defined by aggregate nominal pulse spacing of less than 0.35 m, 
0.35 m, 0.71 m, and 1.41 m, respectively. This study did not include any QL0 data. 
One key difference between QL0 and QL1 is stricter absolute vertical accuracy 
requirements.

Vertical accuracy checkpoints collected by data contractors are sometimes included in 
the 3DEP products. These data are collected using GNSS receivers with collection meth
odologies expected to have at least twice the target accuracy of their final products and 
adhere to best practices on collecting checkpoints as outlined by the ASPRS (ASPRS 2023). 
The checkpoints used for assessing accuracy are independent from ground control points 
used for rectification.

Land cover information used in this study was from the National Oceanic and 
Atmospheric Administration’s (NOAA) 10-m BETA Coastal Change Analysis Program 
(C-CAP; NOAA 2019) and is derived from 2015 to 2017 orthoimagery. Compared to 
other national land cover products, C-CAP provides detailed delineation of coastal 
wetlands by salinity (i.e., estuarine and palustrine wetlands) and vegetation type 
(i.e., herbaceous, shrub, and forested; Table 1). The distribution of land cover types 
within the study area is shown in Figure 1b-i. C-CAP land cover distribution can be 
visualized by U.S. state using the C-CAP Land Cover Atlas (https://coast.noaa.gov/ 
ccapatlas/).

Table 1. Land cover classes used to assess the vertical accuracy of digital elevation models 
by coastal land cover types. Source data was the 2016 National Oceanographic and 
Atmospheric Administration’s (NOAA) Coastal Change Analysis Program’s (C-CAP) 10-m 
BETA land cover product (NOAA 2019). NA, Not applicable.

NOAA C-CAP class

Classes for our study

Simplified land cover Vegetation state

Developed impervious Developed Non-vegetated
Upland Herbaceous Upland grass/pasture Vegetated
Upland Forest Upland forest Vegetated
Scrub/Shrub Upland shrub Vegetated
Palustrine Forested Wetland Palustrine woody wetland Vegetated
Palustrine Scrub/Shrub Wetland
Palustrine Emergent Wetland Palustrine emergent wetland Vegetated
Estuarine Forested Wetland Estuarine woody wetland Vegetated
Estuarine Scrub/Shrub Wetland
Estuarine Emergent Wetland Estuarine emergent wetland Vegetated
Barren Land Barren Non-vegetated
Unconsolidated Shore
Open Water Water NA
Palustrine Aquatic Bed
Estuarine Aquatic Bed
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2.2. Dataset collation

For this study, we developed a multistep workflow for collating and extracting 
information to vertical accuracy checkpoints provided by contractors. Spatial ana
lyses in this study were completed using Esri ArcGIS Pro v. 3.0.3 (Redlands, CA). 
The first step in creating the checkpoint dataset was to extract checkpoint data 
from the 3DEP WESM. The WESM provides links to documents related to acquisi
tion overview, checkpoints, flight logs, and other information that the contractor 
sends along with their lidar data. While checkpoints likely exist for all 3DEP 
acquisitions, we were not able to locate checkpoints for all lidar acquisitions 
(hereafter called ‘work units’). From 163 work units, we found 60 sets of check
points spanning from 2012 to 2020. Checkpoints were provided either as Esri 
shapefiles, comma-separated value spreadsheets, or in tables within reports. Each 
of these file formats required a different type of manual processing to extract the 
checkpoint coordinates, elevation, and projection information. For Esri shapefiles, 
the only processing required was to standardize units, column names, and spatial 
reference. Microsoft Excel (Redmond, WA) was used to extract the appropriate 
columns from spreadsheets to obtain coordinates and elevations. For the text 
documents, we used Microsoft Excel Power Query to extract the table from the 
appropriate pages of the documents.

We were interested in assessing the accuracy of DEMs using only the checkpoints that 
were collected concurrently with the lidar data acquisition for that work unit. Ensuring 
each checkpoint was paired with the appropriate DEM elevation required careful proces
sing. First, we projected points to the North American Vertical Datum of 1983 Albers Equal 
Area and generated coordinates in decimal degrees for each point. Rather than a time 
consuming and storage-intensive process of downloading DEMs for each of the 60 work 
units, we used the available 3DEP Image Server Query (accessible at elevation.national 
map.gov/arcgis/rest/services/3DEPElevation/ImageServer/query) to return a list of DEM 
tile names that provide elevation coverage at the coordinates entered to the function, 
including older DEMs. We used Python package BeautifulSoup4.11.1 (Richardson 2022) 
and string-matching operations to extract a link to the matching DEM tile. If the matching 
DEM was not available in the query, we retrieved the original product resolution (OPR) 
DEM for the lidar work unit, which can vary in cell size (minimum 0.5 m, median 1 m, 
interquartile range 2.6 m, and maximum of 5 m). The OPR DEM is a product made by the 
contractor for 3DEP partner requirements and posted in USGS data storage sites. OPR 
elevation data were used for 1443 out of the final 5228 checkpoints. We ensured projec
tion consistency and extracted DEM values to the checkpoints.

Upon collecting the appropriate DEM values, we collated the checkpoint datasets and 
calculated the elevation differences between the DEM and the checkpoints. Some work 
units extended outside of the study area and corresponding checkpoints were omitted 
from our study. We then joined the QL value from the WESM using the work unit ID.

For this study, NOAA’s C-CAP data was simplified into two schemes (Table 1): 1) NVA or 
VVA and 2) simplified land cover. The simplified land cover reduced the 15 classes 
originally in the study area to a total of eight classes. Due to limits in spatial extent of 
the 10-m product, we omitted 757 unclassified points located in Texas, Virginia, New 
Jersey, and Pennsylvania.
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2.3. Statistical analysis

We assessed accuracy by vegetation state (i.e., non-vegetated and vegetated), by simplified 
land cover, and by lidar QL. In accordance with ASPRS (2023), accuracy for non-vegetated 
areas, NVA, was represented by the root mean square error (RMSE; (Equation 1). The NVA 
represents accuracy when all non-vegetated classes were combined. Due to the non-normal 
distribution of vegetated error, the 95th percentile error was used for any class determined to 
be vegetated (Enwright et al. 2023). The VVA represents accuracy when all vegetated classes 
were combined. Equations (2) and (3) reflect Mean Error and Normalized Median Absolute 
Deviation (NMAD; Höhle and Höhle 2009), alternative measures of accuracy that we used to 
examine elements of bias and variability. 

where Δ y is the difference of DEM elevation and checkpoint observed elevation, n is the 
sample size; and Δyi denotes the individual differences i = 1, . . . , n. These statistics were 
calculated using the Python data analysis package Pandas (Pandas Development Team 2021).

3. Results and discussion

3.1. Vertical accuracy checkpoints distribution

Checkpoint density is dependent on both the quantity of lidar acquisitions in an area and 
the quantity and distribution of checkpoints that a contractor captured during an accu
racy assessment. Figure 1a shows the checkpoint count by state and illustrates the 
distribution of checkpoints in the study area. The contractor checkpoints collated in this 
study with land cover classes and lidar quality information are available as a USGS data 
release (Han et al. 2024).

3.2. Accuracy results

Aggregating all the points as either non-vegetated or vegetated, we find accuracy values 
meet the latest ASPRS specifications for lidar (i.e., 10-cm NVA RMSE), which is the criterion 
for lidar standards (Table 2a). These metrics are similar to those that we would find for an 
individual acquisition, which suggests that the checkpoint collation process and the 
usage of external land cover may not have introduced discernable error.

Across QLs, NVA is similar, with a slightly higher accuracy for QL3. This discrepancy 
between expected accuracies in QLs could be due to low sample sizes or spatial distribu
tion of checkpoints. The VVA has a 2-cm range with the highest accuracy in QL1. Similar to 
trends in NVA, the QL3 VVA is more accurate than QL2, which may also be due to the small 
sample size. VVA contributes to only 66 points out of the 120 points in QL3, and only 7 of 
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these are located within wetlands. Despite the limited sample size, the increase in VVA for 
QL1 May be due to better vegetation penetration with the higher pulse density. As more 
contractor checkpoint data become available, future efforts could reassess how these QLs 
compare in addition to looking at higher QL levels (e.g., QL0).

When assessing accuracy by land cover type (Table 2b), we found the non-vegetated 
classes (i.e., Barren and Developed) had similar RMSEs (within about 1 cm). For vegetated 
classes, Palustrine emergent wetlands, Upland forest, and Upland grass/pasture had 
similar error. Estuarine emergent wetland had the highest error with 95th percentile 
error of about 34 cm, which was lower than estimates from wetland-specific studies and 
reviews (Enwright et al. 2023; Medeiros et al. 2015). Although we see that the Palustrine 
woody wetland and Upland shrub classes had error that could arise from vegetation- 
related obstacles, we also see that the Palustrine emergent wetland class had low error 
despite expecting similar impacts on elevation error from hydrology and vegetation as in 
the Estuarine emergent wetland class. However, the small checkpoint sample size for this 
and several other classes reduces our confidence in these results, as we found that VVA 
was not representative of general vertical accuracy for all vegetated areas. For example, 
Estuarine emergent wetland (1% of checkpoints, 3% of land cover), Palustrine emergent 
wetland (3% of checkpoints, 5% of land cover), Palustrine woody wetland (2% of 

Table 2. Summary statistics for the vertical accuracy of digital elevation models along the U.S. Atlantic 
and Gulf of Mexico coasts using vertical accuracy checkpoints provided by contractors. (a) Statistics are 
provided for the non-vegetated vertical accuracy (NVA) and vegetated vertical accuracy (VVA) for 
pooled data and by Quality Level (QL). (b) Vertical accuracy by simplified land cover class. In alignment 
with ASPRS (2023), accuracy for NVA was represented by the root mean square error (RMSE), whereas 
vegetated error was represented using the 95th percentile error (95P) given the non-normal distribu
tion of vegetated error (Enwright et al. 2023). n, sample count; ME, mean error; SD, standard deviation; 
NMAD, normalized median absolute deviation; NA, Not applicable.

Accuracy metrics (cm) Accuracy metrics (cm)

Type RMSE 95P n QL RMSE 95P ME SD NMAD n

(a)
NVA 6.9 NA 2520 QL1 7.1 NA 0.5 7.0 5.4 457

QL2 6.9 NA 0.1 6.9 5.4 2009
QL3 6.2 NA −0.3 6.2 4.6 54

VVA NA 22.3 2708 QL1 NA 19.9 5.4 10.4 8.2 562
QL2 NA 22.9 3.9 29.6 8.6 2080
QL3 NA 20.2 4.0 9.7 12.1 66

Accuracy metrics (cm)

Simplified land cover class RMSE 95P ME SD NMAD n

(b)

Barren 7.7 NA 2.0 7.5 6.0 298
Developed 6.8 NA −0.1 6.8 5.3 2222

Estuarine emergent wetland NA 33.8 12.9 11.8 11.5 36
Palustrine emergent wetland NA 21.9 5.9 9.6 8.6 163

Palustrine woody wetland NA 26.4 −3.9 65.4 10.8 112
Upland forest NA 21.8 2.6 36.4 8.6 572

Upland grass/pasture NA 21.6 4.6 11.1 8.3 1691
Upland shrub NA 23.1 8.8 55.7 9.0 134
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checkpoints, 18% of land cover), Upland forest (11% of checkpoints, 34% of land cover), 
and Upland shrub (3% of checkpoints, 4% of land cover) all have lower small sample sizes 
than their relative cover for the entire study area. Only 6% of checkpoints were classified 
as wetland, but 29% of land cover was classified as wetland. The lack of representation in 
locations such as wetlands could be due to limited site accessibility where hydrology, 
vegetation, and land ownership may reduce sample feasibility. A sample design that is 
spatially balanced and representative of all conditions is likely beyond the scope of work 
for contractor checkpoint creation. Although the guidance has evolved overtime, the 
latest ASPRS guidelines require 30 points in each NVA and VVA category with recommen
dations for additional points as study area increases above 1000 km2 up to a max of 120 
points for area for areas over about 9000 km2. The standards call for checkpoints to be 
generally proportional across various vegetated land cover types within an acquisition 
area. In cases where this is not feasible, the guidelines suggest use of best professional 
judgement and agreement between the data producer and requester. Depending on 
research objectives, our study highlights the potential need for augmenting the contrac
tor-provided accuracy information with site-specific in situ data collection and/or data 
from literature, as was done for coastal wetlands in Enwright et al. (2023).

Our methods built upon previous work by Gesch, Oimoen, and Evans (2014) by using 
updated data. Their study found wetlands to be a more accurate class, while our study 
found that using contractor checkpoints and higher resolution data resulted in wetlands 
being the least accurate class. The discrepancy of our findings could be due to spatial 
resolution of land cover data, DEMs, and lidar point spacing differences between the 
studies.

Expanding beyond RMSE, we found that checkpoints in Estuarine emergent 
wetland areas have larger positive mean error (i.e., DEM overestimates checkpoint 
elevation; Figure 2), which agrees with other studies that show that these areas 
have high bias (Enwright et al. 2023). Woody vegetation also had higher bias and 
high SD (Table 2b; Figure 2), a potential result of dense vegetation as an obstacle 
of lidar capture of ground elevation. NMAD is an outlier-resilient estimate of 

Figure 2. Boxplots of differences between elevation checkpoints and digital elevation models devel
oped for the Atlantic and Gulf of Mexico coasts of the United States, grouped by land cover type.
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standard deviation, and through comparison of the two, we can assess the effect 
of outliers on variability. NMAD and SD are similar for non-woody classes; however, 
we found differences between the metrics in all woody classes, which suggest that 
outliers have larger impact on the variability of errors for these classes. Knowledge 
of classes prone to high outlier effects highlight sample size as a consideration 
when assessing accuracy.

3.3. Improvements and applications

We anticipate future additions in 3DEP to increase the number of checkpoints 
available for QL1 DEMs. While this study focused on use of contractor checkpoints, 
this approach could be enhanced by using other published elevation data, includ
ing the National Geodetic Survey geodetic control points and a database of OPUS, 
and points collected for research studies, or long-term monitoring programs (Sharp 
et al. 2021). Due to coastal dynamics, the use of checkpoints with temporal 
differences with the DEM acquisition date could introduce error. There is also 
capacity for improvements in land cover data as maps like NOAA’s C-CAP product 
become more readily available at higher spatial resolution. Future studies could 
consider using a fuzzy approach to enhance the assessment of land cover-based 
accuracy to address potential issues with land cover uncertainty. While our study 
utilized C-CAP for the more detailed coastal wetland zonation, other efforts could 
explore utilizing other land cover datasets including, detailed local-level land cover 
or vegetation-type maps. These kinds of studies could investigate additional DEM 
accuracy factors such as slope gradient and more specific vegetation characteristics 
(e.g., canopy height), which could lead to different methods of grouping spatially 
explicit vertical accuracy measures, where sample size allows. Local studies could 
conduct detailed experiments to expand our understanding of the physical rela
tionship between these factors and aerial lidar data collection. Building on research 
like Su and Bork (2006), future research could evaluate how contemporary manned 
airborne lidar systems are performing across a range of conditions in specific land 
cover classes.

Vertical accuracy has seen applications in mapping inundation and exposure to tidal 
datums (Amante 2019; Enwright et al. 2023; Gesch 2018). Gesch (2018) reviewed how 
vertical error has applications in elevation-based assessments of inundation areas or sea 
level rise increment estimations. Monte Carlo error propagation is a method for account
ing for data uncertainty (Amante 2019; Enwright et al. 2023). These approaches require 
information about elevation error, which can be provided by a study like this, especially 
information related to land cover-based elevation error. Results from our study could be 
used to provide enhanced information for general elevation accuracy metrics such that 
Monte Carlo and other methods could use metrics specific to the land cover and QL 
classification to estimate the accuracy of the DEM on a per pixel basis (Amante 2018). 
Finally, a more nuanced discussion of the limitations to general accuracy assessments 
reported in lidar-derived DEM metadata may help researchers and natural resource 
managers gauge when and where additional data should be collected for a more robust 
understanding of vertical accuracy.
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